ISOLATION AND CHARACTERIZATION OF CELLULOSE-DEGRADING FUNGI FROM Arachis hypogaea Shells FOR POTENTIAL BIOMASS VALORIZATION
DOI:
https://doi.org/10.33003/fjs-2025-0904-3499Keywords:
Cellulolytic fungi, Aspergillus flavus, Aspergillus niger, Groundnut shell, Congo red stainingAbstract
The exploitation of agro-industrial waste provides a sustainable method for enzyme production and biomass use. This work examined the isolation and characterization of cellulolytic fungi from decomposed Arachis hypogaea (groundnut) shells, a lignocellulosic substrate abundant in cellulose. Four fungal isolates were procured, of which two (OPGS and OPBS) had notable cellulolytic activity, as indicated by distinct hydrolysis zones on carboxymethyl cellulose (CMC) agar stained with Congo red. The isolates were identified as Aspergillus flavus and Aspergillus niger through morphological and microscopic investigation. Quantitative screening in submerged fermentation demonstrated maximal cellulase activities of 86.7 ± 1.7 U/mL for A. flavus and 92.3 ± 1.1 U/mL for A. niger. Enzyme activity associated with a gradual decrease in pH, signifying active substrate metabolism. These findings emphasize the viability of groundnut shell as an economical substrate for cellulase production and demonstrate the appropriateness of Aspergillus strains in biomass bioconversion processes.
References
Agarwal, G., Kulshrestha, V., Sharma, P., & Jain, I. P. (2010). Change in the microstructure at W/Si interface and surface by swift heavy ions. Journal of colloid and interface science, 351(2), 570-575. https://doi.org/10.1016/j.jcis.2010.07.055
Akintunde, S. O., & Selyshchev, P. A. (2016). The influence of radiation-induced vacancy on The formation of thin-film of compound layer during a reactive diffusion process. Journal of Physics and Chemistry of Solids, 92, 64-69. https://doi.org/10.1016/j.jpcs.2016.01.020
Arranz, A., & Palacio, C. (2009). Low-energy Ar+ ion-beam induced vanadium silicide formation at V/Si interfaces. Thin Solid Films, 517(8), 2656-2660. https://doi.org/10.1016/j.tsf.2008.10.052
Attix, F. H. (2008). Introduction to radiological physics and radiation dosimetry. John Wiley & Sons. ISBN 9783527617142
Boussaa, N., Guittoum, A., & Tobbeche, S. (2005). Formation of Ni2Si silicide in Ni/Si bilayers by ion beam mixing. Vacuum, 77(2), 125-130. https://doi.org/10.1016/j.vacuum.2004.07.081
Bower, R. W., Sigurd, D., & Scott, R. E. (1973). Formation kinetics and structure of Pd2Si films on Si. Solid-State Electronics, 16(12), 1461-1471. https://doi.org/10.1016/0038-1101(73)90063-4
Chakraborty, B. R., Halder, S. K., Karar, N., Kabiraj, D., & Avasthi, D. K. (2005). Formation of cobalt silicides as a buried layer in silicon using high energy heavy ion irradiation. Journal of Physics D: Applied Physics, 38(16), 2836. https://doi.org/10.1088/0022-3727/38/16/015
D'Anna, E., Leggieri, G., Luches, A., & Majni, G. (1986). Chromium silicide formation with multiple electron beam pulses. Thin Solid Films, 140(1), 163-166. https://doi.org/10.1016/0040-6090(86)90170-7
Jian-Qiang, L., Zhong-Lie, W., Xun-Liang, D., Ren-Yuan, H., & Fu-Zhai, C. (1989). A study of the chemical driving force in ion mixing of metal-metal systems. Vacuum, 39(2-4), 275-277. https://doi.org/10.1016/0042-207X(89)90217-0
Majni, G., Nava, F., Ottaviani, G., Luches, A., Nassisi, V., & Celotti, G. (1982). Electron beam induced reactions in metal/Si systems. Vacuum, 32(1), 11-18. https://doi.org/10.1016/S0042-207X(82)80189-9
Matsuoka, M., Chubaci, J. F. D., Biersack, J. P., Watanabe, S., Kuratani, N., & Ogata, K. (1997). Nickel metallization of Si by dynamic ion-beam mixing. Radiation effects and defects in solids, 143(1), 65-74. https://doi.org/10.1080/10420159708212949
Murarka, S. P. (2012). Silicides for VLSI applications. Academic press. ISBN 9780080570563
Pfeiler, W. (Ed.). (2007). Alloy physics: a comprehensive reference. John Wiley & Sons. ISBN 9783527313211
Sisodia, V., Sapnar, K. B., & Dhole, S. (2011). Ti silicide formation by interfacial mixing using swift heavy ion irradiation. Archives of Physics Research, 2(1), 54-67. (http://scholarsresearchlibrary.com/archive.html)
Swalin, R. (1962). Diffusion of interstitial impurities in germanium and silicon. Journal of Physics and Chemistry of Solids, 23(1-2), 154-156. https://doi.org/10.1016/0022-3697(62)90069-0
Tamuleviius, S., Pranevicius, L., & Budinaviius, J. (1991). Application of dynamic ion mixing in platinum silicide formation. Applied surface science, 53, 159-164. https://doi.org/10.1016/0169-4332(91)90257-K
Wakita, A. S., Sigmon, T. W., & Gibbons, J. F. (1983). Oxidation kinetics of laser formed MoSi2 on polycrystalline silicon. Journal of Applied Physics, 54(5), 2711-2715. https://doi.org/10.1063/1.332296
Was, G. S. (2007). Fundamentals of Radiation Materials Science: Metals and Alloys. Springer. https://doi.org/10.1007/978-1-4939-3438-6
Whang, C. N., Kim, H. K., Lee, R. Y., & Smith, R. J. (1989). Ar+ ion beam induced silicide formation mechanism at the Pd-Si interface. Journal of materials science, 24, 265-270. https://doi.org/10.1007/BF00660965
Ziegler, J. F., & Biersack, J. P. (1985). The stopping and range of ions in matter. In Treatise on heavy-ion science: volume 6: astrophysics, chemistry, and condensed matter (pp. 93-129). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-8103-1_3
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences