DELINERATION OF URBAN FLOOD RISK AREAS USING GEOSPATIAL TECHNIQUE

Sulaiman Yunus

Department of Geography, Bayero University Kano, Kano State, Nigeria.

Corresponding author’s email: ngsyunus.geog@buk.edu.ng

ABSTRACT
The threat posed by urban flooding in most cities of the world is becoming alarming especially within the recent decades. This makes it necessary to identify and delineate flood risk areas within cities in order to curb this menace. This study employs geospatial technique to delineate flood risk areas within Kano metropolis with a view to mitigating its impact on lives and properties. Digital Elevation Model (ASTER DEM 30m) was used to derive excess surface run-off attributes including flow direction and accumulation. Based on these attributes, flood risk areas were determined and delineated using buffer distances of 500 meters. World View image (30 cm spatial resolution) was used to identify the landuses at risk. The result from the analysis delineated flood risk areas at varying exposure levels (i.e high, moderate and low). It was evident that flood risk level within the metropolis corresponds to the pattern of surface run-off flow accumulation areas. Settlements and farmlands found within high accumulation areas along the floodplains of River Jakara (in the northern and north-eastern part) and Kano-Zaria road (southern part) are at higher risk than those found on low accumulation areas. The study concluded that excess surface run-off flow direction and accumulation are among the fundamental factors determining the risk to urban flooding. The study recommends that with the ongoing level of urban development and impervious surface expansion, urban planners and policy makers should make use of the flow direction and accumulation maps in determining safer places for future developments.

Keywords: Digital Elevation Model, Flow Direction, Flow Accumulation, Buffer Analysis

INTRODUCTION
Flood is one of the most recurring and devastating hazards affecting human lives and causing severe economic damage throughout the world, (Khan et al, 2011). Studies have predicted that with the prevailing climate variability, flood intensity and frequency will threaten many regions of the world in the future (Jonkman & Dawson, 2012). Flooding occurs because of the rapid accumulation and release of runoff waters from upstream to downstream, which is caused by very heavy rainfall. Urbanization due to population increase results into conversion of agricultural land and natural vegetation/wetlands into built-up environments thereby increasing the amount of excessive surface run-off which accumulates on the lower lands (Nuissl and Siedentop, 2021). This scenario implies that urban areas in particular suffer from a comparatively high flood risk due to their high population number and density, multiple economic activities and many infrastructure and property values, which in turn interferes with the natural infiltration processes. The rate of recurrence of urban flooding is of great concern due to the number of lives affected and properties destroyed globally (Borga et al., 2014 and Simonovic, 2011). Flood vulnerability is expected to increase in frequency and severity, due to urbanization and climate change, severe weather in the form of heavy rains and river discharge conditions (Dihn, Balica, Popescu & Jonoski, 2014). The current trend and future scenarios of flood risks therefore demand for accurate spatial and temporal information on the potential hazards and risks of floods. With the rapid development of urbanization, flood risks become more and more severe (Dawson, 2008). With the continuous expansion of cities, the urban flooding and waterlogging problems are expected to become worse and worse unless more effective measures are adopted. However, flood risk assessment in urban areas is more complex than in rural areas because of their closely packed buildings, different kinds of land uses, and large amounts of flood control works and drainage systems (Cheng and Li, 2015). Risk assessment is an essential component of sustainable urban flood management and is becoming more important with the increase in population density and the intensifying effects of climate change. In urban flood risk analysis uncertainty is mainly associated with spatial and temporal variability in urban storm water hydrology, which includes variables such as precipitation; drainage area size, shape and orientation; ground cover and soil type; slope of terrain; vegetation; roughness; porosity; storage potential (wetlands, ponds, reservoir etc.);
characteristics of drainage system, etc. Depending on the spatial and temporal variability of rainfall intensity, rainfall duration and direction of storm movement there can be wide range of shapes of rainfall hyetographs Cheng and Li, (2015). Flood menace in Nigeria remains one of the most frequent and widespread hazards in the built environment as it can simultaneously affect agriculture, settlement, flora and fauna, transportation, education, food security, infrastructure, peace building among others (Grothman, 2017; Ikusemaran, 2017; Agbonkhese et al., 2014; Percival and Teuw, 2019). The widespread effects of floods as reflected in the 2030 Agenda for Sustainable Development (ASD) linked the disaster to one of the challenges limiting sustainability (UN Habitat, 2019). Several studies have been conducted locally and globally on flooding using various approaches and techniques of data analysis. Most of these studies focused on the use of geospatial, statistical and mixed methods in analyzing qualitative, quantitative and remotely sensed data types to examine flood vulnerability, risk, assessment of impact and flood prediction and modeling. For example, studies by Alfieri et al., (2012); Rozalis et al., (2010); Biondi et al., (2013); Seal et al., (2012); Raha et al., (2012); Dawod et al., (2011a); Samarasinghe et al., (2010); Al Saud, (2010); Haiyan et al., (2010); Zhang et al., (2010); Xiaomeng et al., (2011); Liu et al., (2011); Sulaiman et al., (2012); Chan et al., (2011); Dawod et al., (2011b); Ojigi, Abdulkadir & Aderoju, (2013); Daffi, Okun & Ismail, (2014); Nwilo et al. 2012; Ogwuche & Abah, (2014); Ejikeme et al. (2015); Nabegu, (2014); Bamiode and Badiora (2019); Agbonkhese et al.,(2014); Ilyasu, (2017); Azua et al.,(2019) and Nkwnonwo (2015); Adelekan, 2010;Emmanuel, 2016; Eze, Vogel and Ibrahim, 2018; Itopa, 2018; Ikusemaran among others have done so much with regards to flood disaster. However, this particular study is different from most of the afore mentioned in terms of the approach and method of flood risk delineation adopted. Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. This study aimed at delineating urban flood risk areas within Kano metropolis based on the analysis of excess surface run-off flow direction and accumulation. This is to enable taking policy and practice measures in order to reduce the risk to urban flooding and mitigate it impact for sustainable urban development.

STUDY AREA

Geography and Location
Kano metropolis is located between longitudes 8\(^{0}\) 25' E to 8\(^{0}\) 40' E and latitude 11\(^{0}\) 50' N and 12\(^{0}\) 10' N. The metropolis comprises of eight (8) local government areas (Dala, Fagge, Gwale, Kano Municipal, Nassarawa, Tarauni) and parts of Kumbotso and Ungoggo (Maigari, 2014). It covers the total built-up area of about 238.42km\(^{2}\) as at 2018 (Figure 1). The population of the metropolis is projected to about 4, 008, 306 (populationstat.com, 2020). The area has in recent years undergone rapid growth and transformation which is accompanied by increase in intensities of human activities, landuse conversion, convergence and dynamics of social and environmental risks and disasters (Barau et al. 2015).

Figure 1: Showing Kano Metropolis

Weather and Climate
The metropolis is characterized by semi-arid type of climate with daily mean temperature of about 30\(^{\circ}\)C. Lowest temperatures i.e 20\(^{\circ}\)C is recorded between December and February (Tanko and Momale, 2014). The climate is characterized by two main seasons; the wet rainy season occurring around May- October, and the dry season occurring between November and April. The climate is the tropical wet and dry type coded as Aw by Koppen's classification of climate. The rainfall regime is such that the amount is highest in the south (1200mm/annum) and decreases northward to less than 884mm/annum.
Environmental Hazards and Disasters
There has been an increase in the rate of rural-urban migration, illegal and unplanned settlement, built-up areas, air and noise pollution, outbreaks of fire disaster, biodiversity depletion, contamination of wells and surface water bodies, disappearing open spaces, recurring of flooding, poor sanitation, and modification of urban microclimate (Bichi, 2000; Maiwada, 2000; Barau 2007; Nabegu, 2010; Dankani, 2013; Ali and Young, 2014; Maigari, 2014; Butu and Mshelia, 2014; Isah, 2015). The threat of urban flooding is a serious problem in the metropolis with many homes and streets inundated with water especially during the rainy season. This makes efforts towards mitigating the impact a major concern to urban planners, policy makers, researchers and other stakeholders.

Research Methods
This section describes the data types, sources, and analyses methods adopted for urban flood risk analysis within Kano metropolis. Figure 2 presents a flow chart that summarizes the data types and methods of analyses conducted in this study.

Data Types and Sources
The data used for urban flood risk analysis in this study are largely Raster data in the form of Digital Elevation Model (ASTER DEM) with 30m spatial resolution and World View satellite image of 2018 (30 cm spatial resolution). The ASTER DEM was downloaded from the official website of United State Geological Station (USGS), http://earthexplorer.usgs.gov, and was used to derive the terrain model of the study area. Surface Hydrological analyses such as Fill, Flow Direction and Flow Accumulation were performed using the DEM. The satellite image on the other hand is sourced from the Kano Geographical Information System Department (KanGIS) of the ministry of land and was used to depict the households at risk within the defined buffer distances at various levels of accumulation.

Data Analyses Methods
The data analyses conducted to determine urban flood risk within Kano metropolis includes: Surface Flow Direction, Surface Flow Accumulation, Spatial Query (using Raster Calculator) and Buffer analysis. These were to provide an understanding of the relationship between the nature of a terrain (elevation and slope) and risk to flooding in urban areas. These analyses enable identification of flood risk areas based on the direction of flow of excess run-off water especially during rainfall and areas/amount of accumulation. Buffer analysis defines areas of risk at certain distance from accumulation areas at various levels.

Surface Flow Direction Analysis
In order to determine urban flood risk areas, flow direction analysis (used for deriving hydrologic characteristics of a surface) was conducted using the ASTER DEM (30m spatial resolution) to create a raster output showing the direction of flow of excess run-off during rainfall from each cell to its steepest downslope neighbor. This is done with the Flow Direction tool (ArcGIS 10.2) which takes a surface data (DEM) as input and outputs a raster showing the direction of flow out of each cell. The direction of flow is determined by the direction of steepest descent, or maximum drop, from each cell which is calculated as follows:

\[
\text{Maximum Drop} = \frac{\text{Change in Z-Value (elevation)}}{\text{Distance}} \times 100
\]

The distance is calculated between cell centers, and therefore, if the cell size is 1, the distance between two orthogonal cells is 1, and the distance between two diagonal cells is 1,414 (the square root of 2). On the other hand, if the maximum descent to several cells is the same, the neighborhood is enlarged until the steepest descent is found. When the direction of steepest
descent is found, the output cell is coded with the value representing that direction. This study adopted the eight-direction (D8) flow model approach (Jenson and Domingue, 1988) which identifies eight valid output directions relating to the eight adjacent cells into which flow could travel. The directions of excess run-off flow and the coding (especially during rainfall) using flow direction analysis are illustrated in Figure 3.

Figure 3: Flow Directions and Codes

Figure 3 especially based on the nature of the terrain gives an insight on the overall flow direction pattern, thereby enabling detection of run-off accumulation areas. For the sake of this particular study, the coding of the flow direction is substituted with the cardinal directions (i.e 64 = N, 4 = S, 1 = E, 16 =W, 128 = NE, 2 =SE, 8 = SW and 32 = NW). This is to enable easy interpretation of the flow direction map.

Surface Flow Accumulation Analysis
After conducting surface flow direction analysis to appreciate the nature of the terrain and understand the direction of flow of excess run-off water especially during rainfall, surface flow accumulation analysis was then conducted using the DEM to create a raster output describing the accumulated flow into each cell. The Flow Accumulation tool (ArcGIS 10.2) calculates accumulated flow as the accumulated weight of all cells flowing into each downslope cell in the output raster. If no weight raster is provided, a weight of 1 is applied to each cell, and the value of cells in the output raster is the number of cells that flow into each cell. Cells with a high flow accumulation are areas of concentrated flow and may be used to identify stream channels (ESRI, 2020). Cells with a flow accumulation of 0 are local topographic highs and may be used to identify ridges. This in other words signifies that, the higher the accumulation flow value, the lower the elevation and the less steep is the slope and vice versa. In order to depict the relationship between flow direction and accumulation, figure 4 clearly shows the direction of travel from each cell and the number of cells that flow into each cell (accumulation). This method of deriving accumulated flow from a DEM is also presented in Jenson and Domingue (1988).

Figure 4: Flow Direction and Accumulation Relationship

Raster-Based Spatial Query Analysis
In order to determine accumulation zones at various levels across the metropolis, flow accumulation was reclassified into three different classes based on the weight of accumulation at cell level. The three accumulation flow (3) classes identified are namely high, moderate and low accumulation flow areas. This is to enable categorizing the levels of risk (high, moderate and low) in accordance to accumulation amount. Raster Calculators using Boolean operators was used to query and retrieve accumulation flow areas at various levels.

Buffer Analysis for identification of elements at Risk
Buffer distances ranging from 1-500m on either side of the identified and classified flow accumulation lines was conducted to delineate land uses at risk within the defined distance. Land uses falling within the defined buffer distances of various accumulation levels are seen to be at more risk depending on the level of accumulation flow than other areas lying on very low accumulation flow areas.

RESULTS AND DISCUSSION
Results from the analysis of the various data acquired for urban flood risk delineation and analysis were presented (using maps) and discussed. The policy implications were raised and recommendations provided for sustainable urban development. The results are presented based on the following subheadings; pattern of surface flow direction and accumulation, and urban flood risk delineation.

Pattern of Surface Flow Direction and Accumulation
The result from the analysis of surface run-off flow direction (as presented in figure 5) depicts excessive flow from the central part of the metropolis towards the southern parts on one hand and from the center towards the northern parts on the other. It is evident that the direction of flow is largely influenced by the nature of the terrain which is characterized by a ridge-like feature located centrally but oriented diagonally from the North-west towards South-eastern parts of the metropolis. Excess run-off flow moves down-ward from the highlands towards the lower lands on either sides of the highland.
The major flow directions using the cardinal points are towards the S and SE on the southern axis and N, E, and NE directions on the northern axis. With the prevailing pattern of flow direction, it is easy to predict the possible areas of excess run-off accumulation and possibly flood hazard and riskscapes within the study area.

With regards to surface water flow accumulation, the result (figure 6) depicts three major flow accumulation areas based on the nature of the terrain which determines the flow direction. Depending on the amount of run-off, the amount of accumulation varies. In other words, the higher the amount of excess run-off, the more the accumulation especially at the low lands with high accumulation characteristics. And on the other hand, the more the accumulation of excess run-off, the more the flood risk within the study area. There is a direct relationship between the size of impervious surfaces within an area and the amount of excess run-off. Yunus, (2020) determined a rapid increase in the area of impervious surfaces within Kano metropolis between 2000 and 2018. Also Mohammed, Hassan and Badamasi, (2019) have extensively studied the trend and pattern of rainfall within the study area and have identified persistent increase in annual rainfall amount and intensity throughout the study period. These tremendous changes have significantly increased the amount of surface water run-off and accumulation thereby increasing urban flood risk within the study area. For the purpose of this study, flow accumulation areas were identified and reclassified into three (3) major accumulation flow areas based on the expected amount of accumulation (i.e. High, Moderate and Low). The reclassification was done to enable categorizing urban flood risk based on the level of excess run-off accumulation throughout the study areas. From figure 6, it is evident that the major flow accumulation areas are the lowest lands found on the either sides of the central highland. These are specifically along the floodplains of river Jakara at the Northern part and towards the lowlands along Kano- Zaria road on the southern part. On the other hand, the lower accumulation areas are located on higher lands from the center but connected (discharge their water) to the high accumulation areas.
Urban Flood Risk Delineation
This section presents the delineation of urban flood risk areas at various risk levels based on the amount of surface water accumulation. The section is categorized into three (i.e low, moderate and high urban flood risk areas).

Low Urban Flood Risk Areas
In order to delineate flood risk areas within the metropolis, the study integrated the identified flow accumulation areas at various levels (figure 6) with buffer distance of 500 metres on either sides of each accumulation area. With this, landuses at risk were identified in relation to various levels of flow accumulation. From figures 7 and 8, low accumulation areas were identified as places located on the immediate slopes from the highest peaks of the central highlands. They are characterized by steeper slopes and high velocity run-off movement towards low lands due to force of gravity. The primary activities by the moving water are more of incision and transportation of sediments and other anthropogenic wastes found on the surface rather than deposition. Low flood risk areas delineated using 500m buffer distance are areas around MAKIA, Kurna, Gwagwarwa and Kofar Ruwa (figure 7).

Moderate Urban Flood Risk Areas
Moderate risk areas are found within 500m distance on either side along River Jakara and part of Gwagwarwa residential area (figure 9) on the northern part of the study area. From the result of accumulation and risk analysis, it is evident that the level of risk to urban flooding increases towards areas of high accumulation and decreases towards areas of low accumulation.
Similarly, from figure 10, moderate risk areas delineated were found on moderate accumulation areas, thereby buttressing the fact that risk increases with increase in accumulation and decreases with decrease in accumulation. And this process is largely influenced by the pattern of the terrain and flow direction. Areas around the ring-road western bypass are also exposed to moderate risk level of flooding (figure 10) as against most of the areas within the central part of the metropolis which are located on very low or even no accumulation areas.

High Urban Flood Risk Areas
High risk areas are the most alarming areas usually found within the lowest terrain with very high amount of excess run-off accumulation. Elements including built-up and farmlands within these areas are more exposed to the threat of flooding than any other part of the metropolis. However, it is very important to note that less dense residential buildings engaging in primarily primary activities were observed to have fallen within the delineated buffer distance as presented in figure 11. Residential places specifically along the floodplains of River Jakara on the northern axis are seen to be at greater risk. Excessive flow accumulation as a result of high rainfall and continuous increase in impervious surfaces affects many buildings overtime. This results into the need for implementing and enforcing building code standards when necessary so as to reduce the risk and also mitigate the impact of flooding.
DELINEATION OF URBAN FLOOD ... Sulaiman Yunus FJS

Figure 11: High Surface Accumulation Flow Area showing part of Residential Landuse along the Floodplains of River Jakara at High Flood Risk level within 500m Distance

Similarly, areas along the Kano-Zaria road covering parts of the popular Amana city and associated structures are also at high risk to urban flooding. Although the efforts towards raising structures within the Amana city, failure to do same for the surrounding will still render the city at serious risk in the future.

Figure 12: High Surface Accumulation Flow Area showing part of Residential Landuse along Kano-Zaria Road at High Flood Risk level within 500m Distance

It is very important to note that each of the accumulation flow area defines the duration of the expected flooding. For example, the duration of floods on the high accumulation areas (low lands) last longer and is associated to higher risk level depending on the amount of run-off than that of a flood on low accumulation area. Therefore, apart from the floodability of an area, the duration of flood is also an important factor determining the risk level and flood impact.

CONCLUSION AND RECOMMENDATIONS

In conclusion, excess surface run-off flow direction and accumulation (which are influenced by the nature of the terrain of the metropolis) are among the fundamental factors determining the risk to urban flooding. Built-up areas and farmlands exposed to high flood risk are those found on the low lands associated with high accumulation flow. Low risk areas are located on higher elevation with steeper slopes and associated to low excess run-off accumulation. The duration of flooding which defines the risk level is also dependent on the amount of accumulation which is governed by the nature of the terrain. On the basis of this conclusion, the following recommendations were made:

1. With the ongoing level of urban development and impervious surface expansion, urban planners and policy makers should make use of the excess surface water flow direction and accumulation maps in determining safer places for future developments.
2. Where structure must be erected on high risk areas, building codes should be enforced by the policy makers so as to avoid reduce risk and mitigate the impact of flooding.
3. For the existing buildings within flood risk areas, proper drainage connection and maintenance practices should be adhered to in order to reduce the impact of flooding.
4. Rainfall amount and duration should be monitored so as to be able to predict the occurrence of flooding prior to its occurrence in order to prepare for response in advance.
REFERENCES

FUDMA Journal of Sciences (Vol. 4 No.4, December, 2020, pp 492 - 501